9 research outputs found

    UMA PROPOSTA DE SISTEMA EMBARCADO DE BAIXO CUSTO COM CONECTIVIDADE TCP/IP

    Get PDF
    Este trabalho apresenta a proposta de uma arquitetura microcontrolada de baixo custo para o uso em sistemas embarcados com capacidade de conexão em redes padrão Ethernet utilizando os protocolos TCP/IP. Baseado nesta arquitetura, foi implementado um protótipo e também desenvolvida uma aplicação para transferência de dados entre o protótipo e um computador pessoal

    Distributed Renewable Power Sources in Weak Grids — Analysis and Control

    Get PDF
    This chapter describes the main aspects about distributed generation (DG) systems and investigates the operation of DG systems based on static power converters connected to weak grids. Initially, the concept of DG is discussed, and the main topologies for the connection of DG systems to the grid are covered. Converters used in such applications are also introduced. When connected to weak grids, DG systems based on static power converters suffer with problems related to the total harmonic distortion (THD) at the connection point. To address this issue, initially, a definition of weak grid is presented. Then, the dynamic behaviour of the most common small DG system when connected to a weak grid and the relation between the voltage harmonic distortion and the weak grid impedance are analyzed. Aiming to comply with the THD requirements, the main topologies of passive filter used in the connection of inverter-based DG units with weak grids are also discussed. Finally, a controller design that considers the grid side impedance in its formulation is developed. Experimental results are provided to support the theoretical analysis and to illustrate the performance of the grid-connected DG in a weak grid case operation scenario

    Supervisory Layer for Improved Interactivity of Distributed Generation Inverters with Smart Grids

    No full text
    This work proposes an autonomous management system for distributed generation (DG) systems connected to the AC grid, using supervisory control theory (SCT). SCT is used to deal with discrete asynchronous events that modify the properties and operational conditions of these systems. The proposed management layer allows the smart inverters to interact with smart grid managers (SGMs), while guaranteeing operation compliance with the IEEE Standards. The implemented supervisor for the management layer is an automaton that performs the smart inverter manager (SIM) functions in the photovoltaic systems in discrete events. A DSP real-time verification was performed with Typhoon HIL 602+ to demonstrate the smart inverter’s operating dynamics connected to the grid. The results showed the fast response and robust operation of the smart inverter manager to the commands from the smart grid manager

    Supervisory Layer for Improved Interactivity of Distributed Generation Inverters with Smart Grids

    No full text
    This work proposes an autonomous management system for distributed generation (DG) systems connected to the AC grid, using supervisory control theory (SCT). SCT is used to deal with discrete asynchronous events that modify the properties and operational conditions of these systems. The proposed management layer allows the smart inverters to interact with smart grid managers (SGMs), while guaranteeing operation compliance with the IEEE Standards. The implemented supervisor for the management layer is an automaton that performs the smart inverter manager (SIM) functions in the photovoltaic systems in discrete events. A DSP real-time verification was performed with Typhoon HIL 602+ to demonstrate the smart inverter’s operating dynamics connected to the grid. The results showed the fast response and robust operation of the smart inverter manager to the commands from the smart grid manager

    Asymmetrical Pulse-Width Modulation Strategy for Current-Fed Dual Active Bridge Bidirectional Isolated Converter Applied to Energy Storage Systems

    No full text
    This paper proposes an asymmetrical pulse-width modulation (PWM) strategy for current-fed dual-active bridge (CFDAB) converters applied to energy storage systems (ESS). The ESS application considers low-voltage and high-capacity batteries, for low-power applications, such as data centers, residential photovoltaic systems (PV), and uninterruptable power supplies (UPS). The proposed modulation permits the use of an isolation transformer with negligible leakage inductance and, therefore, avoids the use of auxiliary circuits such as snubbers, active-clamp, or resonant cells. Hence, the converter implementation is simplified. The modulation also benefits the design of the control system because the converter can be modeled and controlled using simple strategies. A straightforward, large-signal model for the battery charge mode, which is valid over all the operation range of the converter, is obtained. Also, the converter operates with a fixed dc bus voltage on both charge and discharge modes. These characteristics represent a significant advantage when the CFDAB with PWM modulation is compared with phase-shifted or frequency modulations, commonly applied in these converters

    Hybrid Inverter and Control Strategy for Enabling the PV Generation Dispatch Using Extra-Low-Voltage Batteries

    No full text
    This paper proposes a dispatchable photovoltaic (PV) hybrid inverter for output power tracking without any dependency on the converter’s efficiency and with no power closed loop. The system uses an extra-low-voltage battery energy storage system (BEES) based on a Li-ion battery pack to be applicable for use inside homes and other installations close to the end-user. A bidirectional isolated current-fed dual-active bridge (CF-DAB) converter associated with the batteries provides a wide conversion voltage ratio and ensures safety for the users. The proposed control system shares the DC bus voltage controller between the ac grid interfacing converter (AC-DC) and CF-DAB (DC-DC), eliminating the converter’s efficiency in the reference equations. When dispatchable power is not required, or according to the user’s request, the battery’s charge/discharge current can be specified. A disturbance rejection technique avoids low-frequency current ripple on the battery side. It contributes to the battery’s lifespan. Experimental results presenting the dc bus voltage control, current disturbance rejection, and power dispatching are included to validate the proposal

    Hybrid Inverter and Control Strategy for Enabling the PV Generation Dispatch Using Extra-Low-Voltage Batteries

    No full text
    This paper proposes a dispatchable photovoltaic (PV) hybrid inverter for output power tracking without any dependency on the converter’s efficiency and with no power closed loop. The system uses an extra-low-voltage battery energy storage system (BEES) based on a Li-ion battery pack to be applicable for use inside homes and other installations close to the end-user. A bidirectional isolated current-fed dual-active bridge (CF-DAB) converter associated with the batteries provides a wide conversion voltage ratio and ensures safety for the users. The proposed control system shares the DC bus voltage controller between the ac grid interfacing converter (AC-DC) and CF-DAB (DC-DC), eliminating the converter’s efficiency in the reference equations. When dispatchable power is not required, or according to the user’s request, the battery’s charge/discharge current can be specified. A disturbance rejection technique avoids low-frequency current ripple on the battery side. It contributes to the battery’s lifespan. Experimental results presenting the dc bus voltage control, current disturbance rejection, and power dispatching are included to validate the proposal
    corecore